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Abstract
We have determined the nonlocal, dynamic dielectric response properties of
a multiple-quantum-wire lattice embedded in a semi-infinite plasma-like host
medium, with the progression of parallel wires perpendicular to the interface,
while the wires themselves are parallel to the surface. This is carried out within
the framework of the random phase approximation, neglecting tunnelling. In
this study, we have also investigated the condition for the occurrence of current-
driven plasmon instability as a function of z0, the distance of the first quantum
wire from the bounding surface, and as a function of a, the separation of the
quantum wires. Furthermore, the coupled mode dispersion relations for the
plasmons of multiple-quantum-wire systems in interaction with the surface
and bulk plasmons of the host material are analysed for dependences on the
geometrical parameters z0 and a.

1. Introduction

Developments in nanostructure science and technology over the past decade have focused much
attention on the dielectric response properties [1–3] of very small nanosystems. In particular,
quantum-wire plasmons have been investigated [4–12] with multiple wires embedded in a bulk
semiconductor, and single-wire systems have been examined in the vicinity of an interface
[13–15]. Here, we report on our analysis of the inverse dielectric function and plasmon
spectrum of multiple-quantum-wire lattices embedded in a semi-infinite plasma-like host
semiconductor having a mobile electron population that may be due to excessive doping or
real-space transfer. The wires are parallel to each other and to the bounding surface, while
the progression of wires is perpendicular to the surface (figure 1). The electrostatic collective
modes examined are constituted of the hybridization of the quantum-wire plasmons coupled
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Figure 1. A system of N quantum wires with spacing a and width b, with the first at a distance
z0 from the interface at z = 0 of the semi-infinite host medium of dielectric constant ε(ω) with a
medium of dielectric constant ε′ on the other side.

to the bulk and surface plasmons of the host medium, with internal Coulomb coupling among
the wire plasmons. The dispersion of the modes is determined as a function of wavenumber
parallel to the wires (which are equally spaced by distance a) and as a function of the distance
of the first wire from the interface, z0 (figure 1).

Recently reported experiments [16, 17] and theoretical considerations [18] have
underscored the importance of multiple (double) planar quantum well nano-systems in the
detection of terahertz radiation by means of resonant plasmon and current response with
a grating coupler. Furthermore, it has now been shown [19] that current driven plasmon
instability can also occur in a double-quantum-wire system carrying equal and opposite
currents in the two wires, provided that the drift velocity falls between the acoustic and
optical phase velocities of the double-quantum-wire plasmons. In consideration of these
accomplishments, and with an eye toward mechanisms for optimization of such features
for possible use in terahertz devices, we also explore here the effects of the interface under
consideration on the criterion for double-quantum-wire plasmon instability—in particular as
it relates to dependences on z0 (distance of the first wire from the interface) and a (separation
of the wires).

2. Polarizabilities of a semi-infinite plasma-like host medium (α0
semi) and of N quantum

wires (α0
NQW)

Within the framework of the random phase approximation (RPA—neglecting tunnelling), the
polarizability of the combined system of a semi-infinite host medium and N quantum wires
embedded in it is quite accurately given by the sum of the polarizabilities of the constituent
parts [20], α = α0

semi + α0
NQW, where α0

semi represents the polarizability of the bounded plasma-
like host medium (continuum band) and α0

NQW refers to the polarizability of the N-quantum-
wire system. The local polarizability for the semi-infinite plasma-like dielectric medium
(continuum band) is given in position z-representation as [14] (here we allow that the adjoining
medium has a dielectric constant ε′ different from ε = ε0−ω2

p/ω
2 with which we model the host

dielectric properties, with ε0 as the background dielectric constant and ωp = (4πe2n3D/m)1/2
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as the classical bulk plasma frequency of the semi-infinite host plasma continuum band)

α0
semi(q̄, ω; z3, z2) = δ(z3 − z2)[η+(z3) − 1] + (ε′ − ε)δ(z2)η−(z3)e−q̄|z3|/2, (1)

where q̄ ≡ (qx, qy) is the two-dimensional wavevector in the lateral plane. Here, we
have defined η−(z) = θ(z) − θ(−z) = 1, 0,−1 for z > 0, z = 0, z < 0, and
η+(z) = εθ(z) + ε′θ(−z) = ε, (ε′ + ε)/2, ε′ for z > 0, z = 0, z < 0, respectively. (θ(z)
denotes the Heaviside unit step function, θ(z) = 1 for z > 0, 1/2 for z = 0, and 0 for
z < 0.) Notwithstanding its spatial translational invariance in the y-direction it is necessary to
transform α0

semi(q̄,ω; z3, z2) to a y-representation to accommodate the description of quantum
wires confined in the y-direction of the lateral plane. Therefore, we Fourier transform back
into y-position representation, writing

α0
semi(qx, ω; y3z3, y2z2) =

∫
dqy

2π
eiqy(y3−y2)α0

semi(qx, qy, ω; z3, z2)

= δ(y3 − y2)δ(z3 − z2)[η+(z3) − 1] + δ(z2)η−(z3)|z3|(ε′ − ε)

×
( |qx |

2π

)



K1

(
|qx |

√
(y2 − y3)2 + z2

3

)
√

(y2 − y3)2 + z2
3


 , (2)

where |qx | is the magnitude of the one-dimensional (1D) wavevector conjugate to the
translationally invariant x-axis and K1(z) is the modified Bessel function of order one.

Assuming that there is no tunnelling, the joint polarizability of the N quantum wires is
given by the sum of polarizabilities of the individual wires [20]:

α0
NQW =

N−1∑
σ=0

ασ (3, 2), (3)

where

ασ (3, 2) = −
∫

d1 v(3, 1)Rσ (1, 2) (4)

is the free electron polarizability of the σ th quantum wire. Here, v(3, 1) is the Coulomb
potential and Rσ (1, 2) = −iGσ (1, 2)Gσ (2, 1) is the ring diagram density perturbation
response function. Here, Gσ (1, 2) denotes the noninteracting (one-electron) thermodynamic
Green function for the σ th wire. Fourier transforming along the translationally invariant x-axis
parallel to the quantum wires, x1 − x2 → qx , and in time, t1 − t2 → ω, we have

ασ (y3z3, y2z2; qx, ω) = −
∫

dy1

∫
dz1 v(y3 − y1, z3 − z1; qx, ω)Rσ (y1z1, y2z2; qx, ω), (5)

where v(y3 − y1, z3 − z1; qx, ω) is the Fourier transform of the 1D Coulomb potential,

v(y3 − y1, z3 − z1; qx, ω) = 2e2K0

(
|qx |

√
(y3 − y1)2 + (z3 − z1)2

)
, (6)

|qx | is the magnitude of the 1D wavevector and K0(z) represents the modified Bessel function
of order zero.

The noninteracting thermodynamic Green function for each of the disjoint wires having
only the lowest sub-band in the y-direction energetically accessible, and n sub-bands in the
z-direction, can be written in terms of orthonormal sub-band wavefunctions as

iGσ (r1, r2; t1, t2) =
n∑

α=1

∫
dqx

2π
eiqx (x1−x2)e−i(εqx +Eασ )(t1−t2)φσ

α (y1, z1σ )φσ
α (y2, z2σ )

×
{

1 − f0(εqx + Eασ ) for t1 > t2
− f0(εqx + Eασ ) for t1 < t2,

(7)
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where φσ
α = χ(y1)ξ

σ
α (z1σ ) denotes a (real) quantized sub-band wavefunction due to

confinement of electrons in the y- and z-directions, in the σ th wire, with a coordinate z1σ

relative to the wire centre, z1σ = z1 − z0σ (z0σ = z0 + σa; σ = 0, 1, 2, . . . , N − 1),
and Eασ = Eασ(z) + E(y) denotes the corresponding quantized sub-band energy. (Eασ(z)

represents the sub-band energy in the z-direction and E(y) is the lowest sub-band energy in
the y-direction.) We note that the lowest sub-band wavefunction χ(y1) does not depend on
the wire index σ—as assumed above—but we retain the capacity to describe an asymmetric
quantum wire system by having the z-sub-band wavefunction depend on σ . f0(εqx + Eασ ) is
the mean occupation number (Fermi distribution) of electrons in the α sub-band of the σ th
wire, f0(εqx + Eασ ) = [1 + exp((εqx + Eασ − EFσ )/kBT )]−1 with chemical potential EFσ (kB

is the Boltzmann constant and T is the absolute temperature) and εqx = h̄2q2
x /2m refers to the

part of the single-electron kinetic energy along the x-axis of the σ th quantum wire. Fourier
transforming along the translationally invariant x-axis, we determine Rσ (y1z1, y2z2; qx, ω) in
the form

Rσ (y1z1, y2z2; qx, ω) =
∑
α,β

Rσ
αβ(qx , ω)�σ

αβ(y1, z1; y2, z2), (8)

where the matrix element of the ‘ring diagram’ density perturbation response function
Rσ

αβ(qx, ω) of the σ th wire with sub-band indices α, β is given by

Rσ
αβ(qx, ω) = 2

∫
dq ′

x

2π

f0(εq ′
x −qx + Eβσ ) − f0(εq ′

x
+ Eασ )

ω + εq ′
x −qx − εq ′

x
+ (Eβσ − Eασ ) + i0+

, (9)

and �σ
αβ(y1, z1; y2, z2) is given by

�σ
αβ(y1, z1; y2, z2) = φσ

α (y1, z1σ )φσ
α (y2, z2σ )φσ

β (y1, z1σ )φσ
β (y2, z2σ ). (10)

Summing the constituent polarizabilities, α0
semi + α0

NQW, we obtain the joint polarizability,
α, of the combined N-quantum-wire system with the semi-infinite host plasma (in
y-representation) as

α(y3z3, y2z2; qx, ω) = δ(y3 − y2)δ(z3 − z2)[η+(z3) − 1]

+ δ(z2)η−(z3)|z3|(ε′ − ε)

( |qx |
2π

)



K1

(
|qx |

√
(y2 − y3)2 + z2

3

)
√

(y2 − y3)2 + z2
3




− 2e2
∑
α,β

∑
σ

Rσ
αβ(qx, ω)V σ

αβ(y3, z3)φ
σ
α (y2, z2σ )φσ

β (y2, z2σ ), (11)

where we define the matrix element of the Fourier transform of the 1D Coulomb potential
(modified Bessel function of order zero) with sub-band indices α, β and wire index σ by

V σ
αβ(y3, z3) =

∫
dy1

∫
dz1 φσ

α (y1, z1σ )K0

(
|qx |

√
y2

3 + (z3 − z1)2

)
φσ

β (y1, z1σ ). (12)

Assuming zero thickness in the y-direction and considering only the lowest y sub-
band to be populated, we write φσ

α (y2, z2σ )φσ
β (y2, z2σ ) = |χ(y2)|2ξσ

α (z2σ )ξσ
β (z2σ ) ≈

δ(y2)ξ
σ
α (z2σ )ξσ

β (z2σ ). With this, the polarizability reduces to

α(y3z3, y2z2; qx, ω) = δ(y3 − y2)δ(z3 − z2)[η+(z3) − 1]

+ δ(z2)η−(z3)|z3|(ε′ − ε)

( |qx |
2π

)



K1

(
|qx |

√
(y2 − y3)2 + z2

3

)
√

(y2 − y3)2 + z2
3




− 2e2δ(y2)
∑
α,β

∑
σ

Rσ
αβ(qx, ω)V σ

αβ(y3, z3)ξ
σ
α (z2σ )ξσ

β (z2σ ). (13)
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3. Solution for the inverse dielectric function K(1, 2)

The inverse dielectric function of the combined system K (1, 2) = δV (1)/δU(2) (1 = r1, t1,
etc) is determined by the RPA integral equation

K (1, 2) = δ(4)(1 − 2) −
∫

d42′ α(1, 2′)K (2′, 2), (14)

where the kernel is the polarizability α of equation (13) above. Suppressing qx and ω, we have

K (y1z1, y2z2) = 1

η+(z1)
δ(y1 − y2)δ(z1 − z2)

− δ(z2)

( |qx |�
π

)(
η−(z1)|z1|

η+(z1)

)



K1

(
|qx |

√
(y1 − y2)2 + z2

1

)
√

(y1 − y2)2 + z2
1




+
2e2

ε

∑
α,β

∑
σ

Rσ
αβ K σ

αβ(y1, z1)

[
δ(y2)ξ

σ
α (z2σ )ξσ

β (z2σ ) − π�

|qx |δ(z2)Y
σ
αβ(y2)

]
,

(15)

where we have defined � = (ε′ − ε)/(ε′ + ε) and

Y σ
αβ(y2) =

∫
dz3 |z3|ξσ

α (z3σ )




K1

(
|qx |

√
y2

2 + z2
3

)
√

y2
2 + z2

3


 ξσ

β (z3σ ) (16)

(1D quantum wire sub-band wavefunctions are assumed to be wholly confined within the
bounding surface, i.e., z > 0). The matrix element of the inverse dielectric function denoted
by K σ

αβ(y1, z1) is defined as

K σ
αβ(y1, z1) =

∫
dy3

∫
dz3 K (y1z1, y3z3)V σ

αβ(y3, z3). (17)

Further analysis of this integral equation yields a matrix equation for K σ
αβ(y1, z1) as

K ρ
µν(y1, z1) = 2e2

ε

∑
α,β

∑
σ

Rσ
αβ

[∫
dz2

∫
dz3 ξσ

α (z2σ )ξσ
β (z2σ )K0 (|qx ||z2 − z3|) ξρ

µ(z3ρ)

× ξρ
ν (z3ρ) − �

∫
dz2

∫
dz3 ξσ

α (z2σ )ξσ
β (z2σ )K0(|qx |[|z2|

+ |z3|])ξρ
µ(z3ρ)ξρ

ν (z3ρ)

]
K σ

αβ(y1, z1)

+
1

η+(z1)

∫
dz2 ξρ

µ(z2ρ)K0

(
|qx |

√
y2

1 + (z1 − z2)2

)
ξρ
ν (z2ρ)

− �
η−(z1)

η+(z1)

∫
dz2 ξρ

µ(z2ρ)K0

(
|qx |

√
y2

1 + (|z1| + |z2|)2

)
ξρ
ν (z2ρ). (18)

The inverse dielectric function may be determined explicitly neglecting tunnelling and intersub-
band transitions in the quantum wires, which may be expressed as Rσ

αβ → δαβ Rσ
αα (due to the

suppression of terms with α �= β by relatively large energy denominators). Assuming thin
quantum wires (qxb � 1, and |ξσ

α (z1σ )|2 → δ(z1σ )) (however, a finite thickness, b, for the
quantum wires in the z-direction is necessary to avoid possible divergences in a well defined



2220 N J M Horing et al

physical problem since K0(z) → − ln(z/2) for small argument z), the matrix equation for the
inverse dielectric function becomes

K ρ
µν(y1, z1) = δµν

{
2e2

ε

∑
α

∑
σ

Rσ
αα K σ

αα(y1, z1)
[
K0 (|qx |a(σ − ρ)) − �K0

(|qx |[z0σ + z0ρ ]
)]

+
1

η+(z1)
K0

(
|qx |

√
y2

1 + z2
1ρ

)
− �

η−(z1)

η+(z1)
K0

(
|qx |

√
y2

1 + (|z1| + z0ρ)2

)}
. (19)

The appearance of the Kroenecker delta (δµν) on the right-hand side above implies that the
matrix equation for K ρ

µν(y1, z1) is diagonal, such that K ρ
µν(y1, z1) = δµν K ρ

µµ(y1, z1). Thus,

K ρ
µµ(y1, z1) = 2e2

ε

∑
α

∑
σ

Rσ
αα K σ

αα(y1, z1)[K0(|qx |b)δσρ + K0(|qx |a|σ − ρ|)(1 − δσρ)

− �(K0(2|qx |[z0 + σa])δσρ + K0(|qx |[2z0 + (σ + ρ)a])(1 − δσρ))]

+ Nρ(y1, z1), (20)

where we have defined Nρ , which is independent of µ, as

Nρ(y1, z1) = 1

η+(z1)
K0

(
|qx |

√
y2

1 + z2
1ρ

)
− �

η−(z1)

η+(z1)
K0

(
|qx |

√
y2

1 + (|z1| + z0ρ)2

)
. (21)

In this, we have separated the diagonal (σ = ρ) log-divergent term K0(|qx |b) from the off-
diagonal (σ �= ρ) terms K0(|qx |a|σ − ρ|). The latter are considerably smaller for |qx |b � 1
with b � a. To solve equation (20), we multiply by Rρ

µµ and sum on µ, obtaining

∑
σ

(
δρσ − 2e2

ε

∑
µ

Rρ
µµ fρσ

)
V σ (y1, z1) = η̃ρ(y1, z1), (22)

where we have defined

V ρ(y1, z1) =
∑
µ

Rρ
µµK ρ

µµ (y1, z1) , (23)

fρσ = K0(|qx |b)δσρ + K0(|qx |a|σ − ρ|)(1 − δσρ)

− �
[
K0(2|qx |[z0 + σa])δσρ + K0(|qx |[2z0 + (σ + ρ)a])(1 − δσρ)

]
, (24)

and

η̃ρ(y1, z1) =
∑

µ

Rρ
µµ Nρ(y1, z1). (25)

A ρ–σ matrix inversion solution for V σ can be employed in the final determination of
K (y1z1, y2z2) as

K (y1z1, y2z2) = 1

η+(z1)
δ(y1 − y2)δ(z1 − z2)

− δ(z2)

( |qx |�
π

)(
η−(z1)|z1|

η+(z1)

)



K1

(
|qx |

√
(y1 − y2)2 + z2

1

)
√

(y1 − y2)2 + z2
1




+
2e2

ε

∑
σ

V σ (y1, z1)

[
δ(y2)δ (z2σ ) − π�

|qx |δ(z2)Y
σ (y2)

]
, (26)

and

Y σ (y2) =
∫

dz3 |z3|δ(z3σ )




K1

(
|qx |

√
y2

2 + z2
3

)
√

y2
2 + z2

3


 . (27)
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4. Interface effects on double-quantum-wire current-driven plasmon instability

To examine the effects of an interface on the criterion for current-driven double-quantum-
wire plasmon (DQWP) instability, we consider the DQWP dispersion relation which may be
extracted from the homogeneous counterpart of equation (22) as

� = det

(
δρσ − 2e2

ε

∑
µ

Rρ
µµ fρσ

)
= 0. (28)

Restricting the double-quantum-wire indices to ρ, σ = 0, 1 and also restricting population
considerations to the lowest sub-band alone (with higher sub-bands taken to be energetically
inaccessible),

∑
µ Rρ

µµ → Rρ , we have

det

(
δρσ − 2e2

ε
Rρ fρσ

)
= 0, (29)

or, installing Rρ and fρσ from equations (9) and (24), the DQWP dispersion relation is given
by[

1 − 2e2

ε
V00 (qx) R+ (qx , ω)

] [
1 − 2e2

ε
V11 (qx) R− (qx, ω)

]

−
(

2e2

ε

)2

V 2
01 (qx) R+ (qx, ω) R− (qx, ω) = 0 (30)

(Rσ → R± for the two wires involved here), where

V00 (qx) = K0(qxb) − �K0(2qx z0),

V11 (qx) = K0(qxb) − �K0(qx [2z0 + a]),

V01 (qx) = V10(qx) = K0(qxa) − �K0(qx [2z0 + a]).

(31)

The role of equal and opposite currents in the two wires is simulated, as in earlier
work [19], by introducing associated drifts in the momentum variables of the Fermi
equilibrium distribution functions of the two wires (ρ = 0, 1 → ±), qx → qx ∓ mvdr/h̄.
Correspondingly, the density perturbation response functions of equation (9) take the form

R± (qx, ω) =
∫

dkx

2π

f0
(
ε
(
kx ∓ mvdr

h̄ − qx
))− f0

(
ε
(
kx ∓ mvdr

h̄

))
h̄ω + ε(kx − qx) − ε (kx)

. (32)

For low wavenumbers, qx < kF, this is well approximated by

R± (qx, ω) = n

m

q2
x

(ω ∓ qxvdr)
2 − q2

x v
2
F

, (33)

which would also emerge from a semiclassical treatment in terms of a linearized classical
collisionless Vlasov–Boltzmann equation with averaging against a sharply cut off Fermi–
Dirac distribution function. Substituting equation (33) for R± into the dispersion relation,
equation (30), we obtain(

1 − q2
x u2

0

(ω − qxvdr)
2 − q2

x v
2
F

V00

)(
1 − q2

x u2
0

(ω + qxvdr)
2 − q2

x v
2
F

V11

)

− q2
x u2

0

(ω − qxvdr)
2 − q2

x v
2
F

q2
x u2

0

(ω + qxvdr)
2 − q2

x v
2
F

V 2
10 = 0, (34)

or[
(ω − qxvdr)

2 − q2
xv

2
F − q2

x u2
0V00

] [
(ω + qxvdr)

2 − q2
x v

2
F − q2

x u2
0V11

]− (
q2

x u2
0

)2
V 2

10 = 0, (35)
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where u2
0 = 2ne2/mε. The role of the surface is embedded in the V s of equation (31), which,

in turn, determine the mode spectrum dependence on z0 through equation (35), which may
also be written as

ω4 − [
2q2

x

(
v2

dr + v2
F

)
+ q2

x u2
0 (V00 + V11)

]
ω2 + 2 (qxvdr)

(
q2

x u2
0

)
(V11 − V00) ω

+ q4
x

(
v2

dr − v2
F − u2

0V00
) (

v2
dr − v2

F − u2
0V11

)− (qx u0)
4 V 2

10 = 0. (36)

This dispersion relation is quartic in ω and, while it can be solved exactly, it simplifies
considerably when a � z since the term involving (V11 − V00) may then be neglected and the
quartic dispersion relation simply becomes quadratic in ω2. Considering this case, we have

ω2
± = q2

x

(
v2

dr + v2
F + u2

0V00
)± q2

x

√
4v2

dr

(
v2

F + u2
0V00

)
+ u4

0V 2
10. (37)

The corresponding plasmon dispersion relation in the absence of drift has acoustic (−)
and optical (+) plasmon branches with coupling to bulk and surface plasmons and/or phonons
of the host through � which incorporates such structure in ε(ω),

ω2
± = q2

x

[
v2

F + u2
0 (V00 ± V10)

]
. (38)

Alternatively, these modes are given by (� → �(ω) = (ε′(ω) − ε(ω))/(ε′(ω) + ε(ω))),

ω2
± = q2

x

{
v2

F + u2
0

[
(K0 (qxb) − �K0 (2qx z0)) ± (K0 (qxa) − �K0 (qx [2z0 + a]))

]}
. (39)

Instability arises then when ω2± < 0, which occurs when√
v2

F + u2
0 (V00 − V10) < vdr <

√
v2

F + u2
0 (V00 + V10). (40)

In is clear that plasma mode instability occurs when vdr falls between the acoustic and optical
mode phase velocities;

vp− (qx) < vdr < vp+ (qx) . (41)

To gain an appreciation of the role of the surface, we start by eliminating the bulk and
surface modes by choosing both ε and ε′ to be constants, ε′ = 1 and ε = 13, and exhibit the
resulting instability range in figure 2 (for a given qx , the instability range of vdr/vF extends
from the lower (acoustic) plasmon phase velocity to the upper (optical) one). The parameters
involved are z0 = 200 nm, a = 30 nm and b = 15 nm. For comparison purposes, we include
an inset in figure 2 showing the corresponding results when the adjoining region is AlGaAs
rather than vacuum with z0 = 60 nm, a = 3 nm and b = 1.5 nm. In both cases of ε′ = 1
and 10, the range of instability increases as qx decreases. It is of particular interest to note
that the instability limits of vdr/vF as a function of z0 in figure 3 show that the instability
range increases mainly because the optical plasmon phase velocity increases more than that
of the acoustic mode as z0 decreases (in figure 3, ε′ = 1, ε = 13, a = 30 nm, b = 15 nm
and qx = 1 × 105 cm). Naturally, as z0 increases, the effect of the image (boundary) on the
instability range is diminished.

5. Undrifted N -quantum-wire plasmon spectroscopy: general considerations with bulk
and surface mode interactions

Considering next the general problem of N quantum wires (without drift) in a plasma-like
medium with the first one at a distance z0 from the interface, the frequency poles of the inverse
dielectric function of equation (26) (given by the dispersion relation of equation (28)) describe
the coupled plasmons of the joint system. The decoupled bulk and surface plasmons are
evident in the frequency poles of equation (26) as the vanishings of ε = ε0 − ω2

p/ω
2 and



Dielectric response and plasmon spectrum of multiple-quantum-wire lattice 2223

qx (105 cm-1)
0 2 4 6 8 10

v d
r
/v

F

1.0

1.5

2.0

2.5

3.0

3.5

0 2 4 6 8 10
1.0

1.5

2.0

2.5

3.0

3.5

4.0

Figure 2. Drift velocity instability regime as a function of qx for a vacuum–GaAs interface with
ε′ = 1, ε = 13, z0 = 200 nm, a = 30 nm and b = 15 nm. Inset: drift velocity instability regime
as a function of qx for an AlGaAs–GaAs interface with ε′ = 10, ε = 13, z0 = 60 nm, a = 3 nm
and b = 1.5 nm.
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Figure 3. Drift velocity instability regime as a function of z0 for a vacuum–GaAs interface with
ε′ = 1, ε = 13, qx = 1 × 105 cm, a = 30 nm and b = 15 nm.

1/� = (ε′ + ε)/(ε′ − ε), which introduce the bulk and surface modes as ω2 = ω2
p/ε0 and

ω2
s = ω2

p/(ε
′ + ε), respectively. These modes are always in the spectrum.

In addition, equation (26) for K (y1z1, y2z2) has coupled plasmon poles for the joint system
determined by

� = det

(
δρσ − 2e2

ε

∑
µ

Rρ
µµ fρσ

)
= 0. (42)

Taking all the wires to be identical, Rρ
µµ = Rµµ is independent of the wire index ρ.

Furthermore, we consider the case in which only the lowest sub-band is populated, so that
Rµµ = δµ0 R. For the local cold plasma limit, we obtain the common density perturbation
response function for the quantum wires as R = n1Dq2

x /(mω2), where n1D is the 1D equilibrium
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density (number of electrons per unit length) of the quantum wires. Also, in the local limit
ε = ε0 − ω2

p/ω
2.

In the case of a single quantum wire, i.e. N = 1, and in the absence of an interface, � = 0,
and ε = ε0 is a constant, we have

ω2 = ω2
1D =

(
2e2n1D

ε0m

)
q2

x K0(|qx |b). (43)

This is the known dispersion relation for a one-dimensional (1D) quantum wire [4–6] embedded
in a constant dielectric host medium. For the case when ε = ε0 − ω2

p/ω
2, it becomes

ω2 =
(

ω2
p

ε0

)
+

(
2e2n1D

ε0m

)
q2

x K0(|qx |b), (44)

which indicates the hybridization of the 1D quantum wire plasmon with the local bulk host
plasmon. On the other hand, if an interface is considered, the dispersion relation takes the
form

ω2
± =

(
1

2

){(
ω2

p

ε0

)
+ ω2

s +

(
2e2n1D

ε0m

)
q2

x (K0(|qx |b) − γ K0(2|qx |z0))

±
([(

ω2
p

ε0

)
+ ω2

s +

(
2e2n1D

ε0m

)
q2

x (K0(|qx |b) − γ K0(2|qx |z0))

]2

− 4ω2
s

[(
ω2

p

ε0

)
+

(
2e2n1D

ε0m

)
q2

x (K0(|qx |b) + K0(2|qx |z0))

])1/2}
, (45)

where γ = (ε′−ε0)/(ε
′ +ε0) is independent of frequency. We note that this dispersion relation

for the quantum wire in the presence of an interface describes two modes which depend on z0,
the distance of the wire centre from the interface. When it is far from the interface (z0 → ∞),
the ‘upper’ mode reproduces the hybridization of the bulk plasmon with the 1D quantum wire
plasmon, equation (44), and the ‘lower’ mode is a decoupled surface plasmon, ωs. The other
limit, in which the quantum wire approaches the interface but still remains within the bounding
surface (z0 → b/2), yields

ω2
± =

(
1

2

){(
ω2

p

ε0

)
+ ω2

s + ω2
1D ±

∣∣∣∣
(

ε′

ε0

)
ω2

s − ω2
1D

∣∣∣∣
}

, (46)

where

ω2
1D =

(
2e2n1D

εm

)
q2

x K0(|qx |b) (47)

is similar to the 1D plasma frequency of the quantum wire given in equation (43), but with an
average of the dielectric constants of the bounding surface and the host medium, ε = (ε′+ε0)/2,
replacing ε0 at the interface. For a constant dielectric background (ε = ε0), equation (45)
reduces to

ω2
+ =

(
2e2n1D

ε0m

)
q2

x (K0(|qx |b) − γ K0(2|qx |z0)) , ω2
− = 0. (48)

For large values of z0 (z0 → ∞) it becomes ω2
1D, equation (43), and for z0 → b/2 it becomes

ω2
1D, equation (47).

For an arbitrary number of wires, N , it is convenient to rewrite the dispersion relation,
equation (42), in the general form � = det Mρσ = 0, where

Mρσ = δρσ − 2e2

ε
Rσ {K0(|qx |b)δρσ + K0(|qx |a|σ − ρ|)(1 − δρσ )

− �[K0(2|qx |[z0 + σa])δρσ + K0(|qx |[2z0 + (σ + ρ)a])(1 − δρσ )]}. (49)
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There is considerable simplification for |qx |b < 1 in the case when z0 	 Na 	 Nb, since we
can then neglect K0(|qx |a|σ − ρ|)(1 − δρσ ) compared to K0(|qx |b) and the terms involving
the image factor, �, combine to K0(2|qx |z0), with the result

Mρσ =
[

1 − 2e2

ε
RK0(|qx |b)

]
δρσ − 2e2

ε
R�K0(2|qx |z0). (50)

The last term on the right is relatively small and negligible under the conditions already stated,
and it may be discarded except in the frequency region where � 	 1, where it describes
coupling of the quantum-wire modes to the surface plasmon. The structure of M and its
determinant are discussed in detail in the appendix. The resulting dispersion relation for
z0 	 Na involves two distinct sets of modes. One set arises from the quadratic equation

1 − 2e2

ε
RK0(|qx |b) − 2e2

ε
R�K0(2|qx |z0) = 0, (51)

which has two roots given by

ω2
± =

(
1

2

){(
ω2

p

ε0

)
+ ω2

s +

(
2e2n1D

ε0m

)
q2

x (K0(|qx |b) − γ NK0(2|qx |z0))

±
([(

ω2
p

ε0

)
+ ω2

s +

(
2e2n1D

ε0m

)
q2

x (K0(|qx |b) − γ NK0(2|qx |z0))

]2

− 4ω2
s

[(
ω2

p

ε0

)
+

(
2e2n1D

ε0m

)
q2

x (K0(|qx |b) + NK0(2|qx |z0))

])1/2}
, (52)

where γ = (ε′ −ε0)/(ε
′ +ε0) is independent of frequency. It should be noted that in the present

case, with z0 	 Na, the N wires behave as if they are clustered into a single wire (with a
corresponding decoupling of the surface plasmon) and hybridization of the bulk plasmon with
the single-quantum-wire plasmon has a strength factor N .

The second set of modes, given by
(

1 − 2e2

ε
RK0(|qx |b)

)N−1

= 0, (53)

yields a 2(N − 1)-degenerate-mode dispersion relation,

ω2 =
(

ω2
p

ε0

)
+

(
2e2n1D

ε0m

)
q2

x K0(|qx |b), (54)

which is characteristic of a single-quantum-wire plasmon hybridized with a bulk plasmon, for
the case in which z0 	 Na so that the interface image is not felt. It is worthwhile to note
that the (N − 1) degeneracy of this mode, which is obviated in the appendix, will clearly be
doubled with the doubling of ω2 roots by the inclusion of a small measure of nonlocality so that
the local limit has 2(N − 1) degenerate modes. Considering both sets of modes, we therefore
correctly have a total of 2 + 2(N −1) = 2N . We examined the limit z0 	 Na in detail in [14].

6. Conclusions: numerical analysis of the dispersion relation

We have explicitly constructed the inverse dielectric function of an N-quantum-wire system
embedded in a dynamic host medium in the vicinity of a bounding surface, equation (26), and
have derived the dispersion relation for the coupled modes of this system, equation (28). This
formulation has been applied to a double-quantum-wire system with equal and opposite drift
velocities in the two wires in the vicinity of an interface. In this application, we neglected both
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Figure 4. Plot of ω/(ωp/
√

ε0) as a function of qx /qF for z0 = 50 Å, N = 1 wire and a vacuum–
GaAs interface.

plasma-like and phonon-like excitations of the host medium. The range of drift velocities which
drive the acoustic and optical plasmons of the double-wire system unstable was obtained as a
function of wavenumber along the wire (qx) and distance (z0) from the interface. In particular,
we confirmed that such instability occurs when the drift velocity magnitude falls between
the acoustic and optical plasmon phase velocities, and found that this range increases as z0

decreases since the optical mode phase velocity increases more rapidly than that of the acoustic
mode phase velocity as z0 → 0.

Considering the general case of N wires with no restriction on z0 and no drift currents,
the dispersion relation is

� = det Mρσ = 0, (55)

with Mρσ given by equation (49). Again, there is a total of 2N longitudinal electrostatic
modes, two for each quantum wire coupled to the semi-infinite dynamic plasma-like medium
(as well as being coupled to each other). On the basis of equation (55), we have numerically
calculated the coupled plasmon spectrum for the wires coupled to bulk and surface plasmons,
determining the collective mode frequencies ω/(ωp/ε

1/2
0 ) as functions of qx/qF for N = 2, 6

for z0 = 50 Å. We also exhibit the geometric dependence of ω/(ωp/ε
1/2
0 ) as a function of z0

for N = 2, 6 and qx/qF = 0.1. The results shown are for vacuum–GaAs parameter values,
n3D = 1 × 1024 m−3, n1D = 1 × 108 m−1, m = 0.063 me, ε′ = 1.00, ε0 = 10.33, b = 10 Å,
a = 20 Å and qF = πn1D/2 is the 1D Fermi wavenumber.

In the case of N = 1 wire, figure 4 exhibits the dispersion of the two modes of equation (45)
for z0 = 50 Å, representing the coupling of the 1D single-quantum-wire plasmon with the
plasmon of the semi-infinite host bulk plasma. For N = 2, there are four modes arising from
equations (49) and (55) whose dispersion is plotted in figure 5 for z0 = 50 Å. Figure 6 exhibits
their dependence on z0 in this range for qx/qF = 0.1, in which case z0 	 Na = 40 Å is well
satisfied for z0 > 500 Å. Under these conditions the two lowest modes converge to the twofold
degenerate frequency of equation (54), while the two upper modes flatten out in accordance
with the decline of K0(2|qx |z0) relative to K0(|qx |b) (representing the lesser importance of the
image term as z0 becomes large). We have also examined the coupled quantum-wire plasmon
spectrum of equations (49) and (55) for N > 2 up to N = 6, for which case the dispersion
is plotted in figure 7 for z0 = 50 Å. There are 12 modes, with five embedded in the lowest
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Figure 5. Plot of ω/(ωp/
√

ε0) as a function of qx /qF for z0 = 50 Å, N = 2 wires and a vacuum–
GaAs interface.

Figure 6. Plot of ω/(ωp/
√

ε0) as a function of z0 for qx /qF = 0.1, N = 2 wires and a vacuum–
GaAs interface.

curve—indistinguishable due to lack of resolution. Figure 8 shows the dependence of these
12 modes on z0 up to z0 = 900 Å for qx/qF = 0.1, with the 12 clustering into three groups of
modes for z0 > 600 Å. Such clustering may be expected on the basis of equations (52)–(54),
with two distinct modes from equation (52) and two clusters of five modes each from the
degenerate roots of equations (53) and (54) (with one accidental degeneracy in three distinct
clusters instead of four).

Our determination of K (1, 2) for an N-quantum-wire system embedded in a dynamic host
medium in the vicinity of an interface can also be used to examine the coupled mode spectrum
of the wire system plasmons hybridized with bulk and surface phonons as well as plasmons of
the dynamic host.



2228 N J M Horing et al

Figure 7. Plot of ω/(ωp/
√

ε0) as a function of qx /qF for z0 = 50 Å, N = 6 wires and a vacuum–
GaAs interface.

Figure 8. Plot of ω/(ωp/
√

ε0) as a function of z0 for qx /qF = 0.1, N = 6 wires and a vacuum–
GaAs interface.
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Appendix

In this appendix, using elementary row (column) operations, we evaluate the determinant of
matrix M , equation (50). Introducing A as the diagonal part of M , i.e.,

A = 1 − 2e2

ε
RK0 (|qx |b) , (A.1)
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and B as the constant term of M , i.e.,

B = −2e2

ε
R�K0 (2|qx |z0) , (A.2)

we write M explicitly as

M =




A + B B B B · · · B B
B A + B B B · · · B B
B B A + B B · · · B B
B B B A + B · · · B B
...

...
...

...
. . .

...
...

B B B B · · · A + B B
B B B B · · · B A + B




. (A.3)

Using the property that the value of the determinant of a matrix is unchanged when we add
to/subtract from each element of a row (column) a constant multiple of the corresponding
element of another row (column), we subtract the first row of M from all other rows to obtain

det M = det




A + B B B B · · · B B
−A A 0 0 · · · 0 0
−A 0 A 0 · · · 0 0
−A 0 0 A · · · 0 0
...

...
...

...
. . .

...
...

−A 0 0 0 · · · A 0
−A 0 0 0 · · · 0 A




. (A.4)

Next, we add the first column to the sum of all other columns, obtaining an upper triangular
determinant

det M = det




A + N B B B B · · · B B
0 A 0 0 · · · 0 0
0 0 A 0 · · · 0 0
0 0 0 A · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · A 0
0 0 0 0 · · · 0 A




, (A.5)

whose value equals the product of its diagonal elements,

det M = AN−1 (A + N B) . (A.6)

Finally substituting for A and B , we obtain

det M =
(

1 − 2e2

ε
RK0 (|qx |b)

)N−1 [
1 − 2e2

ε
RK0 (|qx |b) − 2e2

ε
N R�K0 (2|qx |z0)

]
. (A.7)
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